Illinois I-mark

Chemical and Biomolecular Engineering

The National Science Foundation has awarded a $1.2 million, three-year grant to four professors in Chemical and Biomolecular Engineering for a project that has potential to advance the frontiers of 3-D printing. Drs. Charles Sing, Ying Diao, Damien Guironnet, and Simon Rogers intend to create a platform for designing advanced materials that allows makers to tune the structure and function of a material on-the-fly.

Not long after arriving on campus, the team of investigators, each an assistant professor with a different research background and set of skills, got together to brainstorm what intriguing challenges they could solve together. Take camouflage. Camouflage is only effective as long as the person wearing it remains crouched in the jungle or standing by a sand dune in the desert. What if you had a material that could provide camouflage in many different environments, and you control how it works? Chameleons change color by adjusting skin structure at nanometer-length scales. Could humans design something similar with advanced materials processing?

“What we’re talking about is making a device, an object, instrument, from ostensibly the same material. It has different properties in different parts of the material,” Rogers said. Imagine a Lego brick that has one transparent wall, but the brick is made from all the same material. There’s one material with different properties, and the maker controls the material’s properties.

The project has two overarching goals: develop a screening method for versatile, 3-D printable block copolymer materials, which are two or more different polymer chains linked together; and screen to optimize flow-based tuning of morphology in 3-D printed materials. That entails testing their hypothesis that tuning the flow in 3-D printing will allow for on-the-fly or on-demand manipulation. Insights gained from their research could have potential applications in camouflage, antireflection coatings, metamaterials and displays.

Professors Ying Diao, Damien Guironnet, Charles Sing and Simon Rogers

For this project, each faculty member brings a distinct set of skills and expertise. Charles Sing, who works in molecular simulation and theory, will provide what he described as a treasure map. His research will guide the synthesis that occurs in the lab of Damien Guironnet, the self-described “cook.” Because Sing will be predicting some of the molecule’s properties beforehand, Guironnet will be able to synthesize the molecules that will make the polymers with the unique structure needed for the process.

From there, the material is handed over to Simon Rogers and members of his lab, who carefully control different flow conditions and investigate how the structures reorganize. Rogers then feeds information gleaned from his experiments and analysis to Ying Diao’s group. Diao will take the novel molecule and, with the knowledge of how this material reacted to Rogers’ experiments, she will attempt to make a functional material using 3-D printing.

Rogers then feeds information gleaned from his experiments and analysis to Ying Diao’s group. Diao will take the novel molecule and, with the knowledge of how this material reacted to Rogers’ experiments, she will attempt to make a functional material using 3-D printing.

“One key issue we’re interested in is the assembly, how to direct the assembling of the materials because it’s critical to the function,” Diao said. “In this case, we’re interested in the photonic properties. Can we potentially make camouflage using this functional material by assembling the material into highly ordered structures? We’ll be able to sensitively modulate the structure over length scales predicted by Charles Sing.”

What they’re doing could be called a “high-risk, high-reward” type of project, Diao said, because proposing to physically change structure on the fly is a fairly new idea. “The challenge is, how the assembly of this novel class of materials respond to flow is previously unknown. Flow-directed 3D printing is also not demonstrated before and requires significant innovation to realize,” she said.

Faculty anticipate discoveries and some surprises along the way because the material they’ll be working with is new and the process, called non-equilibrium processing, is still a relatively new concept, they said.

The grant comes from the NSF’s Designing Materials to Revolutionize and Engineer our Future (or DMREF) program, which specifically funds projects that aim to develop advanced materials quickly and at a fraction of the cost.

What makes the project unique is each investigator has a role to play in each other’s research. Due to the iterative, multi-project investigator structure, there will be a lot of coordination involved and each faculty member will need to understand results from their colleagues to be able to apply it to their own research.

“It’s an exciting challenge,” Guironnet said. “We get the opportunity to understand each other’s work to increase the impact of our own research. And at the same time, I get to extend my expertise as well,” he said.

What’s also unique about the group is that each investigator is an assistant faculty member. They all joined the department within about a year of each other.

“Because we’re new professors, there’s been a focus on building our own reputations, our own lab expertise. This is our moment to do something bigger than that, and that is extremely exciting,” Sing said.

Thanks to the NSF funding, faculty also plan to expand their outreach projects in computation, characterization and synthesis, via the Girls’ Adventures in Math, Engineering and Science (GAMES) summer camp and the St. Elmo Brady STEM Academy, which exposes underrepresented elementary students to STEM fields.

More information about the grant can be found here.

 

The University of Illinois Department of Chemical and Biomolecular Engineering and the Department of Mechanical Science and Engineering are pleased to announce that Anton Paar, a leading laboratory equipment company which makes high end instrumentation for material characterization, will provide state-of-the-art instruments to two faculty members to support their work on advancing fundamental and applied research in the field of rheology.

IMG_5943
Simon Rogers, members of his research group and Anton Paar officials gather around the new rheometer.

Anton Paar is loaning Illinois researchers Simon Rogers and Randy Ewoldt each with a top-of-the-line rheometer which will be fully loaded with accessories to allow maximum flexibility to characterize different types of complex fluids such as polymer solutions, colloidal suspensions, micellar solutions, and surfactant monolayers.

“The Rogers lab is extremely grateful to Anton Paar for the confidence they have expressed in our future with this agreement. We will be pushing rheological research forward, in our own little way, with this instrument and the support from Anton Paar,” said Simon Rogers, Assistant Professor of Chemical and Biomolecular Engineering. His research group investigates the fundamental physics behind time dependent phenomena exhibited by soft condensed matter systems under deformation for biomedical, energy, and environment applications.

A celebration to mark the partnership was held April 3. Anton Paar personnel spent the week installing the rheometers and offering training and demonstrations of the instruments’ capabilities.

“The new equipment brings incredible capabilities to our lab, which we plan to leverage and build upon with several research projects,” said Randy Ewoldt, Assistant Professor of Mechanical Science and Engineering. The Ewoldt group studies rheology, non-Newtonian fluid mechanics, mathematical modeling, and design involving soft materials. His work often involves interdisciplinary collaborations and is a combination of experiment and theory.

Anton Paar, which was established in 1922, develops, produces and distributes laboratory instruments as well as process measuring systems and provides custom-tailored automation and robotics solutions worldwide.

The company was looking to collaborate with researchers who “‘think outside the box’ for novel new ways to use research rheometers, especially folks who have a vision for new rheological test method developments which can impact both fundamental and applied research. Both Ewoldt and Rogers are collaborative researchers, and their work in rheology has a number of diverse applications ranging from biomedical, energy, and environmental to designing of soft materials, said Abhi Shetty, Lead Scientist at Anton Paar.

IMG_5982
A close-up of the rheometer.

Ewoldt and Rogers’ labs will receive MCR 702 TwinDrive rheometers, valued at approximately $600,000 total. This is the most advanced rheometer to date, according to the company. The model boasts several advantages, such as allowing researchers to perform rheological tests with two torque transducers and drive units at once. Operating two Electronically Commutated (or EC) motors at once opens up new possibilities, such as counter-rotation. This mode is an invaluable option for microscopy applications, according to Abhi Shetty, Lead Scientist at Anton Paar. Both researchers will receive the microscopy set-ups.

IMG_5914
Chemical and Biomolecular Engineering Department Head Dr. Paul Kenis, Mechanical Science and Engineering Department Head Anthony Jacobi, Randy Ewoldt and Simon Rogers with members of the Anton Paar team.

Rogers said some of his current experiments take a lot of time and effort, and with the new instrument, researchers will be able to “be more productive faster.”
“We’ll also be able to perform tests that just aren’t possible on other instruments,” he added.

The equipment will be loaned to the university for three years, with the possibility of extending the term for another two years. As part of the agreement, the researchers will conduct beta testing of new accessories.

Cookie Settings