Illinois I-mark

Chemical and Biomolecular Engineering

Congratulations to Chemical and Biomolecular Engineering PhD students who have been selected to receive fellowships from the National Science Foundation Graduate Research Fellowship Program. They include Paola Baldaguez Medina, Vasiliki “Aliki” Kolliopoulos, and Chris Torres.

The NSF program recognizes and supports individuals early in their graduate training in science, technology, engineering, and mathematics fields. The aim is to help ensure the vitality and diversity of the scientific and engineering workforce in the U.S. The program provides three years of support for students who have demonstrated their potential for significant research achievements in STEM or STEM education.

ChBE PhD students who were selected for 2020 National Science Founation Graduate Research Program
NSF fellowship recipients (from left) Paola Baldaguez Medina, Vasiliki “Aliki” Kolliopoulos, and Chris Torres

Baldaguez Medina completed her undergraduate education at the University of Puerto Rico at Mayagüez in 2019. While there, she conducted research in separation processes with Professor Hernández-Maldonado and spectroscopy with Professor Hernández-Rivera. She also had internships at the University of Minnesota through the NSF Research Experiences for Undergraduates (REU) program working on block-copolymers, and at the University of Florida with Professor Rinaldi on rheology studies.

A member of Assistant Professor Xiao Su’s research group at the University of Illinois, her work focuses on developing water remediation techniques via electrochemical mediated systems for the removal of anthropogenic organic contaminants of concern. She uses redox-polymers electrodes for pollutant binding through electrosorption. Developing an electrochemical separation method could impact society in numerous ways by providing energy effective and modular technologies for water purification, Baldaguez Medina said.

Kolliopoulos is a member of Professor Brendan Harley’s lab, which has been developing advances in tissue engineering. Craniofacial bone defects are common in the context of congenital, traumatic, and post-oncologic conditions. Such bone defects are often large in size and heal poorly, motivating regenerative medicine efforts. A particular barrier to regenerative healing is the significant immune and inflammatory response post injury which can inhibit cell recruitment, vascular remodeling, and new tissue biosynthesis. The Harley lab is developing a class of mineralized collagen biomaterials capable of meeting a wide range of design requirements for successful deployment into CMF bone defects, notably the ability to conformally fit complex defect geometries and support stem cell osteogenesis.

Kolliopoulos said she aims to understand the effect of scaffold biophysical properties (microstructure, stiffness, alignment, mineral morphology) on the recruitment and subsequent activation status of macrophages. Her ultimate goal is to demonstrate biomaterials capable of modulating the kinetics of the macrophage response post injury as a means to accelerate implant integration and subsequent bone regeneration. She completed her undergraduate studies at The Ohio State University. In 2018, while working in the Carlos Castro Lab, she received an honorable mention for the NSF GRFP for her work on DNA Origami.

Torres is a member of Associate Professor David Flaherty’s research group. He studies the catalytic role of solid-liquid interfaces and extended solvent networks for liquid-phase oxidation reactions. His research goal is to create design rules for catalysts which reduce the environmental impact of chemical industries. He completed his undergraduate education at the University of New Mexico.

Cookie Settings